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Abstract

We have developed a three!dimensional cohesive element and a class of irreversible cohesive laws which
enable the accurate and e.cient tracking of three!dimensional fatigue crack fronts and the calculation of
the attendant fatigue life curves[ The cohesive element governs the separation of the crack ~anks in
accordance with an irreversible cohesive law\ eventually leading to the formation of free surfaces\ and is
compatible with a conventional _nite element discretization of the bulk material[ The versatility and
predictive ability of the method is demonstrated through the simulation of the axial fatigue tests of aluminum
shafts of Thompson and Sheppard "0881a\ b\ c#[ The ability of the method to reproduce the experimentally
observed progression of beachmarks and fatigue life curves is particularly noteworthy[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

The accurate and e.cient simulation of fatigue crack growth from a pre!existing ~aw is central
to damage!tolerance approaches to design presently in use in the aerospace industry\ to cite a
salient example[ Of particular interest is the prediction of the rate of growth and shape of a surface
crack in components of arbitrary geometry subjected to general*possibly mixed!mode*loading
histories[ Inevitably\ this requires advanced computational capability for the tracking of three!
dimensional crack fronts[ Additionally\ many applications of engineering interest\ specially those
concerned with low!strength high!toughness materials\ violate the small!scale yielding assumption
of linear elastic fracture mechanics and require explicit consideration of plastic*and possibly
large*deformations in the component[
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This combination of circumstances favors the use of _nite element methods for the stress analysis
of the component[ In this context\ the tracking of ductile cracks in solids undergoing large!scale
plasticity has received scant attention in the computational literature[ Marusich and Ortiz "0884#
have developed a method of crack tracking based on continuous and adaptive remeshing\ and
have successfully applied the method to the simulation of orthogonal high!speed machining[ While
the approach is capable of accounting for large!scale plasticity and permits the competition
between ductile and brittle fracture mechanisms\ its generalization to three dimensions is not
straightforward\ specially as regards the need for automatic remeshing[ Perhaps a more fun!
damental di.culty concerns the formulation of fatigue crack growth laws in the presence of large!
scale plasticity and arbitrary mixed!mode loading[ While generalizations of Paris| law based on
the J!integral have been proposed\ their validity is not always born out by testing "Azodi and
Bachmann\ 0882#[

In this paper we propose an approach to fatigue life prediction based on the use of cohesive
laws[ Thus\ we partake of the viewpoint*pioneered by Dugdale "0859#\ Barrenblatt "0851#\ Rice
"0857# and others*which regards fracture as a gradual phenomenon in which separation takes
place across an extended crack {tip|\ or cohesive zone\ and is resisted by cohesive forces[ This
theory of fracture permits the incorporation into the analysis of bona _de fracture parameters
such as the spall strength*the peak cohesive traction*and the fracture energy*the area under
the cohesive law*of the material[ An appealing feature of this approach is that it does not
presuppose a particular type of constitutive response in the bulk of the material\ the extent of
crack growth\ or the size of the plastic zone[ The shape and location of successive crack fronts is
also an outcome of the calculations[

Most cohesive fracture laws proposed to date are reversible and history!independent "Rose et
al[\ 0870 ^ Needleman\ 0876 ^ Ortiz\ 0877 ^ Beltz and Rice\ 0880 ^ Rice\ 0881 ^ Ortiz and Suresh\
0882#[ These laws presume that the cohesive tractions exactly retrace the loading tractionÐopening
displacement curve upon loading[ While this is rigorously correct when fracture occurs at the
atomistic level\ where cohesion directly arises from the atomic bonds\ most macroscopic decohesion
processes may be expected to entail some degree of irreversibility[ This requires the formulation
of irreversible cohesive laws such as proposed by Needleman "0881# and Camacho and Ortiz
"0885#[ Unloading irreversibility\ leading to the accumulation of damage\ is particularly critical in
simulations of fatigue crack growth such as envisioned here[ Our present work extends the
formulation of Camacho and Ortiz "0885# to three dimensions\ Section 1[ Thus\ cohesive surfaces
are assumed to unload to the origin and mode coupling is accounted for by the simple device of
introducing an e}ective scalar opening displacement[

Cohesive laws have been built into _nite element analyses as mixed boundary conditions "Hil!
lerborg et al[\ 0865 ^ Needleman\ 0876\ 0889\ 0881 ^ Xu and Needleman\ 0882 ^ Planas et al[\ 0883 ^
Tvergaard and Hutchinson\ 0882\ 0885a\ b# ^ or have been embedded into cohesive _nite elements
"William\ 0878 ^ Ortiz and Suresh 0882 ^ Xu and Needleman\ 0883\ 0885a\ b#[ These elements are
surface!like and are compatible with general bulk _nite element discretizations of the solid\
including those which account for plasticity and large deformations[ Cohesive elements bridge
nascent surfaces and govern their separation in accordance with a cohesive law[ Camacho and
Ortiz "0885# have shown that mesh!size independent results are obtained when the mesh adequately
resolves the cohesive zone[ In Section 2\ we develop a class of three!dimensional cohesive elements
consisting of two quadrilatral facets[ The opening displacements are described by bilinear interp!
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olation within the element[ The element is fully compatible with*and may be used to bridge*
pairs of brick elements[ Selected numerical validation tests which demonstrate the accuracy and
convergence of the elements are discussed in Section 3[ Further validation tests may be found in
de Andre�s "0886#[

In Section 4 we demonstrate the predictive ability of the formulation by recourse to a detailed
simulation of the axial fatigue tests on aluminum shafts of Thompson and Sheppard "0881a\ b\ c#[
To the best of our knowledge\ the simulation of fatigue crack growth is a novel application of
cohesion elements[ A full three!dimensional model of a section of the shaft is formulated within
the _nite element code FEAP "Taylor and Simo�# using an element of Simo� et al[ "0882# to account
for plasticity within the shaft[ The proposed cohesive elements lead to accurate predictions of the
progression of beachmarks observed by Thompson and Sheppard "0881a\ b\ c#[ The predicted
fatigue life curves\ showing the dependence of crack size on number of loading cycles\ are also in
close agreement with observation[

1[ A class of irreversible cohesive laws

In contrast to other methods of fatigue life prediction\ which have largely been predicated upon
a Paris!type law of fatigue crack growth\ here we endeavor to track fatigue cracks by recourse to
a cohesive fracture law[ In this approach\ the creation of new surface is the end result of a process
of gradual loss of strength with increasing separation[ The cohesive law determines the work of
separation\ or fracture energy\ required for the complete formation of a free surface[ In this section\
we formulate a class of inelastic cohesive laws which provide the basis for the simulations of fatigue
crack growth presented in Section 4[

By way of general framework\ we consider a body occupying an initial con_guration B9 W R2[
The body undergoes a motion described by a deformation mapping 8 ] B9×ð9\ T Ł : R2\ where
ð9\ T Ł is the elapsed time interval[ Let F be the attendant deformation gradients and P the _rst
PiolaÐKirchho} stress tensor "cf e[g[\ Marsden and Hughes\ 0872#[ Suppose now that the body is
traversed by a cohesive surface S9[ Furthermore\ orient S9 by choosing a unit normal N[ The
cohesive surface then partitions the body into two subbodies B2

9 \ lying on the plus and minus sides
of S9\ respectively[ The power imparted to the body by body forces r9b and boundary tractions t

is

Wþ � sgB2
9

r9b = 8 dV9¦sg1B2
9

t = 8 dS9 "0#

where the sum is over the two subbodies de_ned by the cohesive surface[ Likewise\ the kinetic
energy of the body is

K � sgB2
9

r9 =8=1 dV9 "1#

The deformation power\ namely\ the part of the power imparted to the solid which is not expended
in raising its kinetic energy\ is\ therefore\
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PD � Wþ −Kþ � sgB2
9

r9"b−8# = 8 dV9¦sg1B2
9

t = 8 dS9 "2#

Additionally\ we assume balance of linear momentum\ which requires ]

99 = P � r9"8−b#\ in B2
9 "3#

P = N � t on 1B2
9 "4#

]P = N^ � ]t^ � 9 on S2
9 "5#

In "3#\ 99 = signi_es the material divergence over B9 and N is the unit normal[ Inserting "3# into "2#\
applying the divergence theorem\ and making use of "4# and "5# leads to the deformation power
identity ]

PD � sgB2
9

P = FþdV9¦gS9

t = ]8^ dS9 "6#

This expression generalizes the conventional deformation power identity "e[g[\ Marsden and
Hughes\ 0872# to bodies containing cohesive surfaces[

As may be seen in "6#\ the presence of a cohesive surface results in the addition of a new term
to the deformation power identity[ The duality or work!conjugacy relations between stress and
deformation measures may also be looked up from "6#[ As in conventional solids\ the _rst PiolaÐ
Kirchho} stress tensor P does work on the deformation gradients F over the bulk of the body[ In
addition\ it follows from "6# that the tractions t do work on the displacement jumps

d � ]8^ "7#

or {opening displacements| over the cohesive surface[ The preceding work!conjugacy relations set
the stage for the development of a general theory of cohesion in solids[ In this theory\ the opening
displacements d play the role of a deformation measure\ with the tractions t furnishing the conjugate
stress measure[ It is worth noting in this regard that d vanishes identically when the body undergoes
a rigid translation\ as required of a proper deformation measure[

For simplicity\ we shall assume that the behavior of cohesive surfaces is local[ Consequently\
for the purpose of formulating a cohesive law we may restrict our attention to a point on the
cohesive surface S9[ We expect the cohesive behavior to be di}erent for opening and sliding[ In
order to account for this di}erence\ we introduce a local orthonormal basis "e0\ e1\ e2# such that e2

coincides with the normal N to the surface S9 and "e0\ e1# spans the tangent plane[ Thus\ in this
basis d2 is the normal opening displacement and d0 and d1 are the sliding displacements\ respectively[
Correspondingly\ t2 is the normal traction across the cohesive surface and t0 and t1 are the shear
tractions\ respectively[

We shall consider cohesive laws which derive from a free energy f"d\ u\ q# in the form

t �
1f

1d
"d\ u\ q# "8#

where u is the local temperature and q is some suitable collection of internal variables which
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describe the inelastic processes attendant to decohesion[ The evolution of the internal variables q

is presumed governed by a set of kinetic relations of the general form

q¾ � f"d\ u\ q# "09#

In the sequel we shall restrict our attention to isothermal processes and the temperature u will be
omitted throughout for simplicity[ The potential structure of the cohesive law is a consequence of
the _rst and second laws of thermodynamics "Lubliner\ 0861\ 0862#[ A key bene_t of this potential
structure is that it reduces the identi_cation of the cohesive law from the three independent
functions t"d\ u\ q# to the single function f"d\ u\ q#[

To further simplify the formulation of mixed!mode cohesive laws\ we follow Camacho and Ortiz
"0885# and introduce an e}ective opening displacement

d � zb1"d1
0¦d1

1#¦d1
2 0 zdTCd "00#

where

C � 2
b1 9 9

9 b1 9

9 9 0 3 "01#

The parameter b assigns di}erent weights to the sliding and normal opening displacements[
Furthermore\ we shall assume that the free energy potential f depends on d only through the
e}ective opening displacement d[ Under these conditions\ the cohesive law "8# reduces to

t �
t"d\ q#

d
Cd "02#

where

t �
1f

1d
"d\ q# "03#

is a scalar e}ective traction[ It follows from "00# and "02# that the e}ective traction is

t � ztTC−0t � zb−1"t10¦t11#¦t12 "04#

This relation shows that b de_nes the ratio between the shear and the normal critical tractions[ In
brittle materials\ this ratio may be estimated by imposing varying degrees of lateral con_nement
on specimens subjected to high!strain!rate axial compression "Chen and Ravichandran\ 0883\
0885#[

Figure 0 depicts the type of irreversible cohesive law envisioned here[ Irreversibility manifests
itself upon unloading[ Therefore\ an appropriate choice of internal variable is the maximum
attained e}ective opening displacement dmax[ Loading is then characterized by the conditions ]
d � dmax and d¾ − 9[ Conversely\ we shall say that the cohesive surface undergoes unloading when
it does not undergo loading[ We assume the existence of a loading envelop de_ning a relation
between t and d under conditions of loading\ Fig[ 0[ A simple and convenient relation is furnished
by Smith and Ferrante|s universal binding law
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Fig[ 0[ Irreversible cohesive law in terms of e}ective traction and opening displacement\ showing a SmithÐFerrante
loading relation and unloading to the origin[

t � esc

d

dc

e−d:dc\ if d � dmax and d¾ − 9 "05#

where e ¼ 1[60717 is the e!number\ sc is the maximum cohesive normal traction and dc is a
characteristic opening displacement[ The potential corresponding to "05# is

f � escdc $0−00¦
d

dc1 e−d:dc% "06#

Following Camacho and Ortiz "0885# we shall assume unloading to the origin\ Fig[ 0\ giving

t �
t"dmax#
dmax

d\ if d ³ dmax or d¾ ³ 9 "07#

For the present model\ the kinetic relations "09# reduce to

d¾max � 6
d¾\ if d � dmax and d¾ − 9 ^

9\ otherwise\
"08#

Evidently\ the cohesive behavior just described is rate!independent[ The loading cohesive law and
two loadingÐunloading paths are shown in Fig[ 0[

For nonlinear elastic materials\ a standard application of the J!integral "Rice\ 0857# establishes
a link between the critical energy release rate Gc for crack propagation and the cohesive law[ For
simplicity\ let the cohesive surface be ~at and let e0 point in the direction of propagation of the
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crack front[ Choosing a contour G for the evaluation of the J!integral which surrounds the cohesive
zone gives

Gc � g
R

9

t = d\0 dx0 � g
R

9

td\0 dx0 "19#

where R is the cohesive zone length and we have made use of "00# and "02#[ A change of variables
enables the second of "19# to be written in the form

Gc � g
�

9

t dd 0 f� "10#

For the particular case of "05#\ "10# gives

Gc � escdc "11#

which relates sc and dc to the fracture energy Gc[ In order to measure the extent of decohesion\ we
shall _nd it convenient to introduce a damage parameter

D �
f"dmax#

Gc

"12#

Evidently\ D ranges from 9Ð0\ with these limits corresponding to an uncracked solid and a fully
formed new surface\ respectively[ Furthermore\ it follows from "08# that

Dþ − 9 "13#

as be_ts the irreversibility of damage[
The precise manner in which the cohesive law accounts for fatigue crack growth deserves further

comment[ Envision\ for de_niteness\ a process of cyclic loading such as depicted in Fig[ 1\ and
consider a point on the cohesive zone at the crack tip[ Suppose that the rising part of the loading
curve\ Fig[ 1a\ results in the opening of the cohesive surface[ In ductile materials such as metals\
this opening is inevitably accompanied by plasticity in the surrounding matrix[ Consequently\
upon unloading the cohesive zone does not close completely\ Fig[ 1b[ Under these conditions\ the
next load rise causes the loading envelope of the cohesive law to be reached and further damage
accumulates\ Fig[ 1c[ After a su.cient number of cycles\ the cohesive surface loses its integrity
completely and new surface is formed\ with the attendant growth of the crack[

2[ Finite element implementation

A particularly appealing aspect of cohesive laws is that they _t naturally within the conventional
framework of _nite element analysis[ One possible approach is to implement the cohesive law as
a mixed boundary condition\ relating tractions to displacements at boundaries and interfaces
"Hillerborg et al[\ 0865 ^ Needleman\ 0876\ 0889a\ b\ 0881 ^ Xu and Needleman\ 0882 ^ Planas et
al[\ 0883 ^ Tvergaard and Hutchinson\ 0882\ 0885a\ b#[ Here\ by contradistinction\ we follow
William "0878# and Ortiz and Suresh "0882# and directly embed the cohesive law into surface!like
_nite elements\ leading to the formulation of cohesive elements[
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Fig[ 1[ Schematic representation of the process of damage accumulation during cyclic loading[ "a# Opening of cohesive
surface ^ "b# partial unloading ^ "c# reloading and subsequent damage[

The particular element geometry considered here is shown in Fig[ 2[ The element consists of two
quadrilateral patches wherein the displacements are represented by bilinear interpolation[ This
element geometry is compatible with three dimensional brick elements[ In the applications discussed
in Section 4\ we have used the enhanced 2!D elastoplastic brick of Simo� et al[ "0882#[ The
compatibility of cohesive elements with general classes of bulk elements and constitutive behavior
is again noteworthy[

As is conventional in the formulation of the displacement _nite element method\ we enforce
equilibrium weakly by recourse to the virtual work principle ]
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Fig[ 2[ Eight!node quadrilateral cohesive element compatible with brick volume elements[

sgB2
9

ðP = 99h−r9b = hŁ dV9¦gS9

t = ]h^ dS9−sg1B2
9\1

t¹ = h dS9 � 9 "14#

where we abide by the conventions introduced in Section 1 and we have restricted attention to the
quasistatic case[ In addition\ in "14# h is an arbitrary virtual displacement satisfying homogeneous
boundary conditions on the displacement boundary 1B2

9\0\ and t¹ are the tractions applied over the
traction boundary 1B2

9\1[
For simplicity\ in the remainder of this section we formulate the cohesive element within the

framework of linearized kinematics[ In particular\ we shall not account for the rotation of the
normal to the cohesive surface[ This level of approximation is appropriate for most applications
to fatigue crack growth\ which typically involve small strain!cycle amplitudes[ We adopt the local
numbering convention displayed in Fig[ 2 and label the nodes on the minus patch 0Ð3 and the
nodes on the plus patch 4Ð7[ The opening displacements across a cohesive element e are then
interpolated from the corresponding nodal displacements ue

a as

de � s
7

a�0

ue
aN

e
a "15#

where Ne
a\ a � 0\ [ [ [ \ 7 are bilinear shape functions satisfying

Na � −Na¦3\ a � 0\ [ [ [ \ 3 "16#

Substitution of the _nite element interpolation into "14# leads to the usual statement of equilibrium
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"e[g[\ Simo� et al[\ 0882# plus an additional internal force array introduced by the cohesive surface[
This additional array is

fia � s
e gSe

9

tiN
e
a dS9 "17#

where Se
9 is the domain of cohesive element e and the sum over e extends to all cohesive elements[

Likewise\ the cohesive surface contributes an additional term to the tangent sti}ness matrix\ which
follows by consistent linearization of "17#[ This term is

Kiakb �
1fia
1ukb

� s
e gSe

9

SikN
e
aN

e
b dS9 "18#

where

S �
1t

1u
�"f?:d#C¦"0:1#ðfý−"f?:d#Łd−1"Cd# &"Cd#\ "loading# "29#

� ðf?"dmax#:dmaxŁC\ "unloading# "20#

are the tangent spring constants of the cohesive surface[
Calculations proceed incrementally and are driven by a prescribed history of applied forces or

displacements[ For each loading step\ the incremental displacements may be computed\ e[g[\ by
recourse to a NewtonÐRaphson iteration[ However\ in applications to high!cycle fatigue it would
be prohibitively expensive to follow in detail every loading cycle[ Instead\ we seek to compute the
solution at selected cycles N9 � 9\ [ [ [ \ N\ Nn¦0\ [ [ [ \ with Nn¦0−Nn large[ Evidently\ this requires
the estimation of the change in the state of the cohesive surface as quanti_ed\ e[g[\ by the damage
variable "12#\ over a large number of cycles[ A convenient estimate is furnished by one!term Taylor
expansion ]

Dn¦0 ¼ Dn¦
1D
1N bn"Nn¦0−Nn# "21#

We compute the rate of change "1D:1N#n of D per cycle at Nn required to e}ect this extrapolation
by a detailed step!by!step computation of a few loading cycles[ The cycle increment Nn¦0−Nn

used in the extrapolation formula "21# is selected so that the damage increment Dn¦0−Dn is
su.ciently small[ It bears emphasis that in calculations D is the only state variable which is
extrapolated[ Following the extrapolation of D\ an equilibrium loop is entered which has the e}ect
of updating the remaining state variables in a manner consistent with the constitutive relations[

3[ Numerical test

We proceed to assess the accuracy and convergence properties of the formulation developed in
the foregoing by applying it to the case of an elliptical crack in an in_nite elastic solid subject
remote tensile loading[ Further validation tests may be found in de Andre�s "0886#[ We consider
an elliptical crack of semiaxes a and b in the ratio k? � b:a � 9[7[ The crack opens under the action
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of a uniform remote normal stress s[ Points on the crack front may be parametrized by the polar
angle a as x0 � a cos a and x1 � b sin a[ The stress intensity factors are then given by Kassir and
Sih "0885#

KI �
szpb
E"k#

"sin1 a¦k?1 cos1 a#0:3 "22#

where k1 � 0−k?1 and

E"k# � g
p:1

9

z0−k1 sin1f df "23#

is the elliptic integral of the second kind[
The computational mesh is shown in Fig[ 3[ The material constants used in the calculations are

roughly representative of aluminum 1913!T240 and are collected in Table 0[ Owing to the sym!
metries of the problem the analysis may be restricted to a single octant[ The computational domain
is discretized into eight!node elastic brick elements and the entire plane of the crack is tiled
with cohesive elements[ The lateral surface of the computational domain is traction!free\ and
displacements are prescribed over its end sections[ The radius of the computational domain is set
to ten times the major semiaxis of the elliptical crack[ The calculations were carried out using R[
L[ Taylor|s _nite element program FEAP "Taylor and Simo�#[ The stress intensity factor is computed
from the opening displacement d through Irwin|s energy release identity\ with the result

KI �X
Ef"d#

0−n1
"24#

where E and n are the Young|s modulus and Poisson|s ratio of the material\ respectively[
The computed values of KI are compared to the analytical solution for the elliptical crack in an

in_nite solid in Fig[ 4[ It should be carefully noted that the comparison is to some extent indirect
owing to the _niteness of the computational domain[ This caveat notwithstanding\ the overall
agreement between the numerical and analytical solutions is satisfactory[ Figure 5 shows the
percent error in the numerical solution[ Again the maximum error of 2) may be considered
satisfactory in view of the limited resolution of the mesh[ De Andre�s "0886# has applied the same

Table 0
Material constants for aluminum 1913!T240

Young|s modulus "E# 61 GPa
Poisson|s ratio "n# 9[2
Yield stress "sY# 200 MPa
Cohesive stress "sc# 359 MPa
Fracture energy "Gc# 64 MPa×mm
Ratio b � tc:sc 9[4
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Fig[ 6[ Geometry of prenotched specimen "mm#[

numerical approach to a DugdaleÐBarrenblat semi!in_nite crack in an in_nite elastic solid and has
established the optimal convergence of the _nite element solution as the mesh size tends to zero[

4[ Comparison with experiment

Thompson and Sheppard have tested prenotched aluminum 1913ÐT240 shafts under cyclic
tension and torsion "Thompson and Sheppard\ 0881a\ b\ c#\ and have reported detailed obser!
vations of the propagation of beachmark crack fronts and fatigue life curves[ Their experiments
thus furnish an exacting test of the predictive ability of the theory developed in the foregoing[ Here
we con_ne our attention to cyclic axial loading[ Simulations concerned with torsional loading have
been reported by de Andre�s "0886#[

The geometry of the specimen is shown in Fig[ 6[ The central section of the shaft has a diameter
of 04[8 mm and contains a machined circular ~aw of radius 9[4 mm at 89> to the axis[ The applied
axial loads consist of alternating tension in the range of 02[4 to 024 MPa[ The material properties
assumed in the calculations are collected in Table 0[

The nominal linear!elastic stress!intensity factor K at the maximum crack depth may be estimated
using the formulae of Forman and Shivakumar "0875# "see also Thompson and Sheppard\ 0881a#[
For the range of loading under consideration\ K increases monotonically from an initial value of
2[4 MPazm to a _nal value of 49 MPAzm when the crack covers nearly all the cross section of
the shaft[ It is interesting to note that\ as expected in the fatigue of metals\ the crack grows even
though the stress!intensity factor remains below*in fact considerably below initially*the tough!
ness KIC � 66 MPazm of the material[ A standard estimate of the corresponding plastic zone size
is

rp �
0
1p 0

K
sY1

1

"25#

For the nominal range of K just noted this gives that the plastic zone size increases monotonically
from an initial value of rp � 9[910 mm to a _nal value of rp � 3[0 mm[ From these estimates we
may expect the condition of small!scale yielding*a key requirement for the applicability of linear!
elastic fracture mechanics*to be met during the early stages of growth[ By contrast\ when the
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)

)CMYK Page 1132

Fig[ 3[ Computational mesh for the analysis of an elliptical crack in an in_nite elastic medium[
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)

)CMYK Page 1133

Fig[ 4[ Exact and computed distribution of stress intensity factor KIC as a function of polar angle for elliptic crack in an
in_nite elastic solid[

Fig[ 5[ Percent error in stress intensity factor KIC as a function of polar angle for elliptic crack in an in_nite elastic solid[



A[ de!Andre�s et al[:International Journal of Solids and Structures 25 "0888# 1120Ð1147 1134

)

)CMYK Page 1134

Fig[ 7[ Computational mesh for the analysis of aluminum shafts subjected to cyclic tensile loading\ showing initial ~aw
and distribution of cohesive elements over the crack plane[



A[ de!Andre�s et al[:International Journal of Solids and Structures 25 "0888# 1120Ð11471135

)

)CMYK Page 1135

"a#

Fig[ 8[ Level contours of damage variable D showing the geometry of the crack "D ¼ 0#\ uncracked ligament "D ¼ 9#\
and cohesive zone "9 ³ D ³ 0#[ "a# N � 144\999 cycles ^ "b# N � 229\999 cycles ^ "c# N � 239\999 cycles\ and "d#
N � 234\999 cycles[
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)

)CMYK Page 1136

"b#

Fig[ 8*continued[
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)

)CMYK Page 1137

"c#

Fig[ 8*continued[



A[ de!Andre�s et al[:International Journal of Solids and Structures 25 "0888# 1120Ð1147 1138

)

)CMYK Page 1138

"d#

Fig[ 8*continued[
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)

)CMYK Page 1149

"a#

Fig[ 00[ Level contours of e}ective Mises stress on the crack plane showing plastic zone size "s − sY � 200 MPa#[ "a#
N � 144\999 cycles ^ "b# N � 229\999 cycles ^ "c# N � 239\999 cycles\ and "d# N � 234\999 cycles[ The level contours
D � 9[7 are also shown for reference as dark lines[
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"b#

Fig[ 00*continued[
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"c#

Fig[ 00*continued[
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"d#

Fig[ 00*continued[
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Fig[ 01[ Experimental "Thompson and Sheppard\ 0881a\ b\ c# vs[ predicted fatigue life curves[
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"a# "b#

Fig[ 09[ Progression of beachmark crack fronts with number of cycles[ "a# Experimental "Thompson and Sheppard\
0881a\ b\ c# ^ "b# computed[

crack extends to about two thirds of the cross section of the shaft\ the remaining ligament is fully
plastic and linear!elastic fracture mechanics is no longer applicable[

It is also illuminating to estimate the width R of the cohesive zone[ Using the DugdaleÐBarenblatt
solution by way of reference gives

R �
p

7
E

0−n1

Gc

s1
c

� 00 mm "26#

The convergence studies of Camacho and Ortiz "0885# and de Andre�s "0886# reveal that the
accuracy of cohesive elements requires that the mesh resolve the cohesive zone\ i[e[\ that the mesh
size h ð R over the cohesive zone[ In the case under consideration\ the corresponding restriction
on the mesh size is that h ð 00 mm\ which\ evidently\ is not a stringent condition[

The computational mesh is shown in Fig[ 7[ The observational evidence "Thompson and
Sheppard\ 0881a\ b\ c# reveals that the crack propagates within its plane throughout the test[ By
virtue of the symmetry of the problem\ the analysis may be restricted to one half of the shaft[ The
shaft is discretized using the enhanced 2!D elastoplastic brick of Simo� et al[ "0882# and the plane
of the crack is tiled with cohesive elements[ The mesh contains a total of 09\293 nodes\ 7514 brick
elements and 494 cohesive elements\ resulting in 17\879 equilibrium equations[ The calculations
were carried out using R[ L[ Taylor|s _nite element program FEAP "Taylor and Simo�#[

Figure 8 shows the distribution of the damage variable D over the plane of the crack after
N � 144\999\ 229\999\ 239\999 and 234\999 loading cycles[ The level contours of D e}ectively
reveal the geometry of the crack\ corresponding to a value of D ¼ 0 ^ the uncracked ligament\
D ¼ 9 ^ and the cohesive zone\ 9 ³ D ³ 0[ The computed sequence of crack fronts\ conventionally
identi_ed with the level contour D � 9[7\ is shown in Fig[ 09\ which also collects the observations
of Thompson and Sheppard "0881a\ b\ c# by way of comparison[ In addition\ Fig[ 00 depicts the
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distribution of the e}ective Mises stress s on the crack plane after the same number of cycles[ The
plastic zone is evident in this _gure as the region where s − sY � 200 MPa[ Finally\ the computed
number!of!cycles vs crack!length curve is compared to the experimental measurements of Thomp!
son and Sheppard "0881a\ b\ c# in Fig[ 01[ Following these authors\ the crack length is measured
along the surface of the shaft[

Several aspects of these results are noteworthy[ In keeping with estimate "25#\ the computed size
of the plastic zones is well beyond the limits of the small!scale yielding assumption central to linear
elastic fracture mechanics[ This underscores the usefulness of cohesive element formulations in
fully!yielded situations[ Another interesting feature is the markedly larger size of the plastic zone
near the free surface\ Fig[ 00a[ Evidently\ this is due to the loss of constraint and the dominance
of plane stress conditions near the free surface[ Indeed\ telltale shear lips characteristic of plane!
stress crack!tip plastic zones have been extensively documented by Thompson and Sheppard
"0881c#[

An immediate e}ect of the development of shear lips is the retardation of the crack front near
the free surface\ an e}ect which is clearly apparent in Fig[ 8[ The point where the crack front meets
the free surface acts as an anchorage point which locally slows down the rate of crack growth[
Indeed\ the experimentally observed beachmarks bear out this prediction\ Fig[ 09[ We note in
passing the close agreement between the computed and experimental beachmarks[ It is also
interesting to note that\ in keeping with the estimate "26#\ the computed cohesive zones are quite
wide and\ consequently\ the mesh size required to resolve the cohesive zones is tolerably large[

By way of sharp contrast\ the portions of the crack front located deep inside the shaft grow
comparatively faster[ Remarkably\ this growth!rate di}erential eventually causes the internal crack
front to tunnel towards the surface\ Fig[ 8c[ By this tunneling mechanism\ the crack e}ectively
defeats the stabilizing e}ect of the shear lips\ which results in a sudden increase in the rate of
growth of the crack[ These di}erent stages of growth are re~ected in the fatigue life curve\ Fig[ 01[
In particular\ the sharp acceleration in growth rate due to tunneling is clearly apparent at about
299\999 cycles[ Here again\ the close agreement between the computed and measured fatigue life
curve is quite remarkable[

5[ Summary and discussion

We have developed a three!dimensional cohesive element and a class of irreversible cohesive
laws which enable the accurate and e.cient tracking of three!dimensional fatigue crack fronts and
the calculation of the attendant fatigue life curves[ The cohesive element governs the separation of
the crack ~anks in accordance with an irreversible cohesive law\ eventually leading to the formation
of free surfaces\ and is compatible with a conventional _nite element discretization of the bulk
material[ The theory permits the incorporation into the analysis of bona _de fracture parameters
such as the cohesive strength and the fracture energy[ An appealing feature of this approach is
that it does not presuppose a particular type of constitutive response of the material\ the extent of
crack growth\ or the size of the plastic zone[ The shape and location of successive crack fronts is
also an outcome of the calculations[

The versatility and predictive ability of the method is demonstrated through the simulation of
the axial fatigue tests on aluminum shafts of Thompson and Sheppard "0881a\ b\ c#[ The prediction
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of three!dimensional fatigue crack growth is\ to the best of our knowledge\ a novel application of
cohesive elements[ The specimens in the experiments of Thompson and Sheppard experience fully
yielded conditions and thus are outside the scope of linear elastic fracture mechanics and Paris|
law[ This underscores the general applicability of cohesive elements[ The calculations reveal
insights*and furnish detailed information*about the formation of shear lips and the attendant
slowdown of the crack near the surface ^ and the way in which the crack defeats the shear lips by
tunneling inside the specimen[ The ability of the method to reproduce the experimentally observed
progression of beachmarks and fatigue life curves is particularly remarkable[
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